
ORNL Sep 2008 AD for Scale 1'

&

$

%

AD for Scale

Jean Utke / Paul Hovland

• motivation

• basic ideas

• OpenAD/F information

• strategies and concerns

• outlook

Utke Argonne

ORNL Sep 2008 AD for Scale 2'

&

$

%

The case for source transformation AD

• the major advantages of AD are ... no need to repeat again

• source transformation AD

– complexity of the tools (vs. operator overloading) /

– efficiency gains ,

• efficiency gains from source transformation AD come from

– activity analysis

– optimizing combinatorial problems at compile time

– for reverse mode: high-level structural allows explicit control flow

reversal

• forward mode source transformation considerably less complicated than

reverse mode source transformation

What is relevant for SCALE?

Utke Argonne

ORNL Sep 2008 AD for Scale 3'

&

$

%

The model source code impacts AD capabilities

• Is activity analysis likely to help?

e.g. want derivatives for subset of model data & routines

• if no and only forward mode ⇒ consider operator overloading facilitated by

a global type change (btw - this already implies a bit of source transformation, see NEOS ,)

• if yes:

– activity analysis based on data flow analysis -

supply the (entire) model source code (can have stubs)

– split sources to filter out ancillary logic (monitoring, debugging, timing, I/O)

to reduce conservative overestimate

– semantically ambiguous data (union, equivalence)

⇒ overestimated active set

– integrate the AD tool chain into the build process

• Will I need reverse mode, e.g. for gradients? If yes - avoid unstructured

control flow and some data access patterns (e.g. linked lists), etc.

Utke Argonne

ORNL Sep 2008 AD for Scale 4'

&

$

%

OpenAD General

• www.mcs.anl.gov/OpenAD

• forward and reverse

• currently first order

• source transformation

• large problems

• Fortran(90) side of a multi language

design

• under development

Open
Analysis

whirl

SageTo
XAIF

xerces
boost
Angel

Sage3
EDG/front − ends

XAIF

(AD source transformation)
xaifBooster

FortTk
Open

Open64

AD/

Fortran pipeline:

whirl2xaif xaif2whirl

F’

whirlF’

xaifxaifF

Fwhirl

F

xaifBooster

F’

OpenAnalysis

Open64

Utke Argonne

ORNL Sep 2008 AD for Scale 5'

&

$

%

OpenAD example

subroutine head(x,y)

double precision,intent(in) :: x

double precision,intent(out) :: y

y=sin(x*x)

end subroutine

result of pushing it through the pipeline →

program driver

use active_module

implicit none

external head

type(active):: x, y

x%v=.5D0

x%d=1.0

call head(x,y)

print *, "F(1,1)=",y%d

end program driver

SUBROUTINE head(X, Y)

use w2f__types

use active_module

IMPLICIT NONE

REAL(w2f__8) OpenAD_Symbol_0

...

REAL(w2f__8) OpenAD_Symbol_5

type(active) :: X

INTENT(IN) X

type(active) :: Y

INTENT(OUT) Y

OpenAD_Symbol_0 = (X%v*X%v)

Y%v = SIN(OpenAD_Symbol_0)

OpenAD_Symbol_2 = X%v

OpenAD_Symbol_3 = X%v

OpenAD_Symbol_1 = COS(OpenAD_Symbol_0)

OpenAD_Symbol_5 = ((OpenAD_Symbol_3 +

OpenAD_Symbol_2) * OpenAD_Symbol_1)

CALL sax(OpenAD_Symbol_5,X,Y)

RETURN

END SUBROUTINE

Utke Argonne

ORNL Sep 2008 AD for Scale 6'

&

$

%

on the website

www.mcs.anl.gov/openad

• more examples

• instructions to download & build

• source code documentation

• revision history

• bibliography

• wiki

• bug tracker

Utke Argonne

ORNL Sep 2008 AD for Scale 7'

&

$

%

active type

by address (active type):

• XAIF has discriminator flag (original

vs. augmenting)

• XAIF does not need to know about

user def’d types

• unparsing according to discriminator

• type in runtime library, not part of

FE, except for member names

• readily supported “everywhere” ex-

cept F77.

• impacts i/o and memory manage-

ment! (netcdf and fotran i/o)

by name (shadowing variables):

• used by all F77 tools (no user def’d types)

• original data retains size, leaving memory allocation

schemes and i/o formats undisturbed

• augmenting data can be allocated and managed in-

dependently from the original data

• in a language with user def’d types (requires XAIF

to know user-def’d types):

– All active variables have to be shadowed.

– All subroutine signatures need to be expanded to

contain the shadowing variables.

– user defined types containing shadowed variables

have to have shadow types (recursively) to main-

tain data separation.

– Variables of shadowed types have to be shadowed.

– Variables pointing to shadowed variables have to

be shadowed (recursively) to properly replicate

pointer arithmetic.

Utke Argonne

ORNL Sep 2008 AD for Scale 8'

&

$

%

computational graphs in OpenAD

Utke Argonne

ORNL Sep 2008 AD for Scale 9'

&

$

%

observations for CENTRM

• top level routine CALC

• identify independents (xmd) and dependents (pxj)

• filter out source files with code not called under CALC

– excludes 58 of 148 files (+121 interface files)

– e.g. the AD driver logic in the code calling CALC

• references files from scaleLib; mostly treated as black-box routines

(except 10 files + 9 stubs)

• CALC allocates/deallocates dynamic memory (for reverse?)

• handling of read scratch() and write scratch() e.g. via wrappers

• processed files need to be ordered (currently fixed based on make output)

Utke Argonne

ORNL Sep 2008 AD for Scale 10'

&

$

%

observations for PMC

• revealed an Open64 front-end bug, now fixed

• top level routine process

• independents pnt flx initialized by read transfer parameters()

• transfer of derivatives from CENTRM in flxrec.f90

• dependents (grp xs new and grp xs 2(?) see xscal.f90)

• filter out 9 of 30 source files with code not called under process

• include 9 file from scalelib

• processed files need to be ordered (currently fixed based on make output)

Utke Argonne

ORNL Sep 2008 AD for Scale 11'

&

$

%

suggestions for source code

• make source separation easy (for the build process)

– one method per file or file contents aligned with separation

– extract setup (initialization, allocation, ...) and cleanup (deallocation,

result output) logic from computation under CALC

– factor out low level I/O

– for modules - separate data (module variables) and interfaces from

implementation (if impossible use stubs)

• avoid equivalence

• avoid gratuitous use of pointers

• avoid gratuitous local memory (de)allocation (e.g. in pxarr for pei).

Utke Argonne

ORNL Sep 2008 AD for Scale 12'

&

$

%

Language Coverage

• array operations

• TRANS SUM DMIN AIMAG ALOG (now added)

• complex arithmetic & intrinsics in bn, fabcz, qol, qratio, trisol

• function to subroutine canonicalization

• except special functions with closed form partials (e.g. ki3, e3)

• question if ki3 should be differentiated (doesn’t appear to be covered by

GRESS)

• question if the GRESS generated e3g is or should be called

• files reads with implied do loops, found in epitoth

Utke Argonne

ORNL Sep 2008 AD for Scale 13'

&

$

%

configurable sources and AD transformation

• often AD tool part of the build process

• ok for precompiled distribution

• not ok with configurable sources (e.g. preprocessor) because AD

transformation is done per configuration

• front-end even performs constant folding for PARAMETER quantities

Utke Argonne

ORNL Sep 2008 AD for Scale 14'

&

$

%

Further Information

• A. Griewank, Evaluating Derivatives, SIAM, 2000.

• A. Griewank, On Automatic Differentiation; this and other technical

reports available online at:

http://www.mcs.anl.gov/autodiff/tech reports.html

• AD in general: http://www.autodiff.org/ ADIFOR:

http://www.mcs.anl.gov/adifor/ ADIC: http://www.mcs.anl.gov/adic/

OpenAD: http://www.mcs.anl.gov/openad/ Other tools:

http://www.autodiff.org/

Utke Argonne

ORNL Sep 2008 AD for Scale 15'

&

$

%

control flow reversal

(a) 1:Entry

2:Bb

3:Loop

4:Branch

1

10:Bb

5:Bb

1

6:Bb

 0

7:EBranch

8:Bb

9:ELoop

11:Exit

(b) 1:Entry

2:Bb

12*:Bb

3:Loop

4:Branch

1

13*:Bb

5:Bb

1

6:Bb

 0

14*:Bb

7:EBranch

8:Bb

16*:Bb

9:Eloop

15*:Bb

10:Bb

11:Exit

(c) -11:Entry

-10:Bb

12*:Bb

-9:ForLoop

-8:Bb

1

-2:Bb

13*:Bb

-7:Branch

-6:Bb

 0

-5:Bb

1

-4:EBranch

-3:ELoop

-1:Exit

Utke Argonne

ORNL Sep 2008 AD for Scale 16'

&

$

%

OpenAD reversal modes

subroutine level granularity

1

2

3

11

2

3 3

2

11

2

3 3

2 2

3 3

joint mode call tree split mode call treecall tree

Utke Argonne

ORNL Sep 2008 AD for Scale 17'

&

$

%

ADified Shallow Water Call Graph

inifields

readparms

read_data_file

read_data_fields

prep_depthcheck_cfl

make_masks

ini_scales prep_coriolis

determine_data_time

read_field read_extended_field boundary_conditions

read_depth_data variance

map_from_control_vector

loop_body_wrapper_outer

read_data

read_eta_data

make_weights

is_eta_data_time

make_weights_depth

make_weights_eta make_weights_uv

make_weights_zonal_transport

make_weights_lapldepth

make_weights_graddepth

forward_model

map_to_control_vector length_of_control_vector

time_step

umomentum vmomentum continuity calc_zonal_transport_split

initial_values calc_depth_uv calc_zonal_transport_joint

cost_function

cost_depth

loop_body_wrapper_inner

shallow_water

• calc zonal transport is split

• nested loop checkpointing in outer and inner loop body wrapper

• inner loop body in split mode

Utke Argonne

ORNL Sep 2008 AD for Scale 18'

&

$

%

OpenAD reversal modes with checkpointing

subroutine level granularity

f

i1 i2 i3 i4

o1 o2

f

o2 o2

i4 i4 i4i3

plain mode

i3 i3

split mode

Utke Argonne

ORNL Sep 2008 AD for Scale 19'

&

$

%

summary OpenAD features

• elimination techniques

– vertex, edge, face

– various heuristics

– DAG per statement or basic block

• anonymous control flow graph reversal, “simple” loop designation

• flexibility & reversal schemes via templates/inlining

• constant folding

• OpenAnalysis integration

Utke Argonne

ORNL Sep 2008 AD for Scale 20'

&

$

%

example - how do directional derivatives come about?

f : y = sin(a ∗ b) ∗ c

yields a graph representing the order of computation:

b a

cos(t1)

c

*

*

a b c

t1

t2

t2

sin

• intrinsics φ(. . . , w, . . .) have local partial derivatives
∂φ

∂w

• e.g. sin(t1) yields cos(t1)

• code list→ intermediate values t1 and t2

• all others already stored in variables

t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

What can we do with this?

Utke Argonne

ORNL Sep 2008 AD for Scale 21'

&

$

%

forward with directional derivatives

f(g(x)) ⇒ ḟ(g(x))ġ(x)ẋ multiplications along paths

Assume a point (a0, b0, c0) and a direction (ȧ, ḃ, ċ) =(d a,d b,d c)

variable and directional derivatives associated in pairs (v,d v):

b a

c

*

*

a b c

t1

t2

t2

sin

d_bd_a d_c

p1

d a*b*p1*c+d b*a*p1*c+d c*t2

has common subexpressions

interleave computations of directional derivatives

t1 = a*b

d_t1 = d_a*b + d_b*a

p1 = cos(t1)

t2 = sin(t1)

d_t2 = d_t1*p1

y = t2*c

d_y = d_t2*c + d_c*t2

What is in d y?

Utke Argonne

ORNL Sep 2008 AD for Scale 22'

&

$

%

forward with directional derivatives II

b a

c

*

*

a b c

t1

t2

t2

sin

d_bd_a d_c

p1

• if (ȧ, ḃ, ċ) = (1, 0, 0) then d y=∂f
∂a

(a0, b0, c0)

t1 = a*b

d_t1 = d_a*b + 0*a

p1 = cos(t1)

t2 = sin(t1)

d_t2 = d_t1*p1

y = t2*c

d_y = d_t2*c + 0*t2

• 3 directions give ∇f(a0, b0, c0) and

d y=∇fT (ȧ, ḃ, ċ) = ∇fT ẋ

• floating point accuracy for derivative calculation !

• gradient calculation cost ∼ n

Utke Argonne

ORNL Sep 2008 AD for Scale 23'

&

$

%

Tangent-linear Models

The tangent-linear model of

F : IRn
→ IRm, y = F (x)

is

Ḟ : IRn+n
→ IRm, ẏ = Ḟ (x, ẋ) ≡ F ′(x) · ẋ .

Jacobian matrix

F ′ =
(

∂yj

∂xi

)j=1,...,m

i=1,...,n
= F ′ · In

column by column at O(n).

m

n q
0

0
0

0
0

0

0
1

.=

Utke Argonne

ORNL Sep 2008 AD for Scale 24'

&

$

%

sparse Jacobians

many repeated Jacobian vector products → compress the Jacobian

F ′ · S = B ∈ IRm×q using a seed matrix S ∈ IRn×q

What are S and q?

Row i in F ′ has ρi nonzeros in columns v(1), . . . , v(ρi)

F ′

i = (α1, . . . , αρi
) = αT and the compressed row is Bi = (β1, . . . , βq) = βT We

choose S so we can solve:

Ŝiα = β

with ŜT
i = (sv(1), . . . , sv(ρi))

αT βT

v(1)v(2) v(3)

Utke Argonne

ORNL Sep 2008 AD for Scale 25'

&

$

%

determining q, S (1)

direct:

• Curtis/Powell/Reid: structurally orthogonal

• Coleman/Moré: column incidence graph coloring)

q is the color number in column incidence graph, each column in S represents a

color with a 1 for each entry whose corresponding column in F ′ is of that color.

4

21

3

S =

1 0

0 1

1 0

0 1

reconstruct F ′ by relocating nonzero elements (direct)

Utke Argonne

ORNL Sep 2008 AD for Scale 26'

&

$

%

determining q, S (2)

indirect:

• Newsam/Ramsdell: q = max
i

{#nonzeros} ≤ χ

• S is a (generalized) Vandermonde matrix
ˆ

λ
j−1

i

˜

, j = 1 . . . q, λi 6= λi′

• How many different λi ?

same example

S =

λ0
1 λ1

1

λ0
2 λ1

2

λ0
3 λ1

3

λ0
4 λ1

4

4

21

3

S =

λ0
1 λ1

1

λ0
2 λ1

2

λ0
1 λ1

1

λ0
2 λ1

2

all combinations of columns (= rows of S): (1, 2), (2, 3), (1, 4)

improved condition via generalization approaches

Utke Argonne

ORNL Sep 2008 AD for Scale 27'

&

$

%

example with a difference

3 colors

a b 0 0

c 0 d 0

e 0 0 f

0 0 g h

1 0 0

0 1 0

0 1 0

0 0 1

=

a b 0

c d 0

e 0 f

0 g h

but with λ ∈ −1, 0, 1

a b 0 0

c 0 d 0

e 0 0 f

0 0 g h

1 −1

1 0

1 0

1 1

=

a + b −a

c + d −c

e + f f − e

g + h h

Utke Argonne

ORNL Sep 2008 AD for Scale 28'

&

$

%

tool support (1)

all tools: seeding & vector mode (forward)

Adifor:

• SparsLinC library

• pattern detection

• sparse forward propagation

Adol-C:

• pattern detection via bitmap propagation

• (dense) forward propagation

What about

Utke Argonne

ORNL Sep 2008 AD for Scale 29'

&

$

%

reverse with adjoints

Assume variable and adjoints associated in pairs (v,g v):

b a

c

*

*

a b c

t1

t2

t2

sin

g_y

p1

append computations of adjoints

t1 = a*b

p1 = cos(t1)

t2 = sin(t1)

y = t2*c

g_c = g_y*t2

g_t2 = g_y*c

g_t1 = g_t2*p1

g_b = g_t1*a

g_a = g_t1*b

What is in (g a,g b,g c)? If g y=1, then ∇f(a0, b0, c0)

Utke Argonne

ORNL Sep 2008 AD for Scale 30'

&

$

%

Adjoint Models

The adjoint model of

F : IRn
→ IRm, y = F (x)

is

F̄ : IRn+m
→ IRn, x̄ = F̄ (x, ȳ) ≡ F ′(x)T · ȳ .

Jacobian matrix

F ′ =
(

∂yj

∂xi

)j=1,...,m

i=1,...,n
= (F ′)T · Im

row by row at O(m) (cheap gradients ,, tape intermediates / partials /)

p

n

m
0 0 0 1 0

.=

Utke Argonne

ORNL Sep 2008 AD for Scale 31'

&

$

%

sparse Jacobians (2)

compress the Jacobian:

F ′T · S̄ = B ∈ IRn×p,with a seed matrix S̄ ∈ IRm×p:

Here q as maximal number of nonzeros in columns, or color number in row

incidence graph.

Combination through partitioning (Coleman/Verma):
• forward sweep with

q = 2

• reverse sweep with

p = 1 F ′

0 1

0 1

.

.

.

.

.

.

0 1

1 0

=

� �

� �

.

.

.

.

.

.

� �

�
P

�

and F ′T

0

0

.

.

.

0

1

=

�

�

.

.

.

�

�

Utke Argonne

ORNL Sep 2008 AD for Scale 32'

&

$

%

tool support (2)

row compression / partitioning require reverse mode!

OpenAD/Tapenade/Adifor (v3.0):

• reverse mode

Adol-C:

• dependency propagation

• dynamic dependency kind estimation (none, linear, polynomial, rational,

transcendental, non-smooth)

We care, e.g. because of partial separability!

• reverse mode yields cheap gradient ... at a considerable cost.

• forward takes O(n) but sparse Hessian indicates

f(x) =
∑

i

aifi(xi) where xi ⊆ x so that ∇fi ∈ IRni , ni << n

Utke Argonne

ORNL Sep 2008 AD for Scale 33'

&

$

%

higher order

sparse tool support: (Adifor: hessian module) Adol-C:

• hessian driver: n Hessian-vector products (one reverse after one forward

each)

• hessian2 driver: Hessian-matrix product (one reverse after one vector

forward)

• generally: univariate Taylor series up to an arbitrary degree (∼ Rapsodia)

efficient Hessians subject of current research

higher order tensors:

• multivariate (direct ,, coefficient management /) COSY INFINITY

• univariate (one coefficient per degree ,, interpolation /) Adol-C/Rapsodia

COSY INFINITY: specialized, offers tight inclusion via remainder term

intervals

Utke Argonne

ORNL Sep 2008 AD for Scale 34'

&

$

%

non-smooth models

caused by:

• intrinsics (max, ceil, sqrt,...)

• branches if (x<2.5) y=f1(x); else y=f2(x);

• can cause seemingly erratic derivatives glossed over by FD

• approximate step lengths in linear model

• explicit g-stop facility using high order expansion

we assume fixed parameters!

• Adifor: catches all intrinsic problems via optional exception handling

• Adol-C: taping mechanism and intrinsic handling catches all non-smooth

crossings; uses ±INF and NaN

• ATOMFT (g-stop), Tapenade (experimental estimator)

Utke Argonne

ORNL Sep 2008 AD for Scale 35'

&

$

%

distinction

3 locally analytic

2 locally analytic but crossed a (potential) kink (min,max,abs) or discontinuity

(ceil)

1 we are exactly at a (potential) kink, discontinuity

0 tie on arithmetic comparison (e.g. a branch condition) → potentially

discontinuous

-1 arithmetic comparison yields a different value than before → sparsity structure

may have changed

taping point

3

1 2

2

−1

01

Utke Argonne

ORNL Sep 2008 AD for Scale 36'

&

$

%

Adol-C - general

• www.math.tu-dresden.de/∼adol-c

• operator overloading creates an execution trace (also called ’tape’)

• execution trace is the function representation for all drivers

Speelpenning example y =
Q

i

xi

double *x = new double[n]; adouble *x = new adouble[n];

double t = 1; adouble t = 1

double y; double y;

trace on(1);

for(i=0; i<n; i++) { for(i=0; i<n; i++) {

x[i] = (i+1.0)/(2.0+i); x[i] <<= (i+1.0)/(2.0+i);

t *= x[i]; t *= x[i];

} }

y = t; t >>= y;

delete[] x; delete[] x;

trace off();

Utke Argonne

ORNL Sep 2008 AD for Scale 37'

&

$

%

simple overloaded operators for a*b

in C++:
struct Afloat{float v; float d;};

Afloat operator *(Afloat a, Afloat b) {

Afloat r; int i;

r.v=a.v*b.v; // value

r.d=a.d*b.v+a.v*b.d; // derivative

return r;

}

in Fortran:
module ATypes

public :: Areal

type Areal

sequence

real :: v

real :: d

end type

end module ATypes

module Amult

use ATypes

interface operator(*)

module procedure multArealAreal

...

end interface

contains

function multArealAreal(a,b) result(r)

type(Areal),intent(in)::a,b

type(Areal)::r

r%v=a%v*b%v ! value

r%d=a%d*b%v+a%v*b%v ! derivative

end function multArealAreal

end module Amult

Operator Overloading ⇒

A simple, relatively unintrusive way to augment semantics via a type change!

Utke Argonne

ORNL Sep 2008 AD for Scale 38'

&

$

%

Adol-C tape

• tape consists of records containing

– op code

– result location

– argument location(s)

– constant argument value

– indicator for boolean value, integer results (branches, max, ceil, ...)

• forward and reverse interpret the tape

• look at examples/speelpenning.cpp using gradient and hessian

• look at the 8 page short reference for parameter values

• ! experimental tapeless forward

Utke Argonne

ORNL Sep 2008 AD for Scale 39'

&

$

%

Adol-C tape size

• in examples/additional examples/speelpenning

• observe tape and value stack sizes with n = 10, 1000, 10000

• estimating storage requirements using tape stats

• look at execution times (100 computations for n = 10000)

• tape size ∼ execution time

• loop unrolling

• larger problems require checkpointing

• manual checkpointing, e.g. for time stepping scheme

• some improvements are under development

Utke Argonne

ORNL Sep 2008 AD for Scale 40'

&

$

%

Adol-C sparsity

sparsity pattern detection

• safe and tight mode, think

P(max(a,b))=P(a)|P(b) vs. P(max(a,b))=P(a) if max(a,b)==a

• propagation of unsigned longs

• forward or reverse

• convoluted example code in examples/additional examples/sparse

• e.g. choice -4 with an arrow-like structure (non-negative numbers indicate the use of a

test tape)

• possibility of collecting entries into blocks of rows and columns for (cheaper) block wise

propagation using jac pat

– -1: contiguous blocks

– -2: non-contiguous blocks

– -3: one block per variable (as in -4)

• see also User Guide pp. 31 and pp. 42

Utke Argonne

ORNL Sep 2008 AD for Scale 41'

&

$

%

Adol-C dependencies

• example code in examples/odexam.cpp

• rhs IR3
7→ IR3

yprime[0] = -sin(y[2]) + 1.0e8*y[2]*(1.0-1.0/y[0]);

yprime[1] = -10.0*y[0] + 3.0e7*y[2]*(1-y[1]);

yprime[2] = -yprime[0] - yprime[1];

• uses active vector class adoublev (there is also an active matrix class

adboublem and along for active subscripting, see examples/gaussexam.cpp)

• forode/accode: generate Taylor coefficients and Jacobians for

x′(t) = F (x(t)), see User Guide pp. 25

• nonzero pattern:

3 -1 4

1 2 2

3 2 4

4 = transcend , 3 = rational , 2 = polynomial , 1 = linear , 0 = zero

negative number k indicate that entries of all B_j with j < -k vanish

Utke Argonne

ORNL Sep 2008 AD for Scale 42'

&

$

%

Adol-C non-smooth

adouble foo(adouble x) {

adouble y;

if (x<=2.5)

y=2*fmax(x,2.0);

else

y=3*floor(x);

return y;

}

• tape at 2.2 and rerun at

– 2.3 → 3

– 2.0 → 1

– 2.5 → 0

– 2.6 → -1

• tape at 3.5 and rerun at

– 3.6 → 3

– 4.5 → 2

– 2.5 → -1

• necessary safety measure for

tape correctness

#include "adolc.h"

adouble foo(adouble x);

int main() {

adouble x,y;

double xp,yp;

std::cout << " tape at: " ;

std::cin >> xp;

trace_on(1);

x <<= xp;

y=foo(x);

y >>= yp;

trace_off();

while (true) {

std::cout << "rerun at: ";

std::cin >> xp;

int rc=function(1,1,1,&xp,&yp);

std::cout << "return code: " << rc << std::endl;

}

}

Utke Argonne

ORNL Sep 2008 AD for Scale 43'

&

$

%

Adol-C directional derivatives & exceptions

tape at 1.0 and rerun at

• 0.5, xdot=1.0 → ydot=3

• 0.0, xdot=1.0 → ydot=3

• 0.0, xdot=-1.0 → ydot=-2

• -0.5, xdot=1.0 → ydot=2

adouble foo(adouble x) {

adouble y;

y=fmax(2*x,3*x);

return y;

}

tape at 1.0 and rerun at

• 0.5, xdot=1.0 → ydot=.707107

• 0.0, xdot=1.0 → ydot=INF

• 0.0, xdot=-1.0 → ydot=NaN

adouble foo(adouble x) {

adouble y;

y=sqrt(x);

return y;

}

Utke Argonne

ORNL Sep 2008 AD for Scale 44'

&

$

%

Adol-C Miscellaneous

• various drivers

• tape dumping tool

• tapeless forward

• tape compression through (manual) loop identification

• non-persistent tape format

Utke Argonne

